
NASA Technical Memorandum 88363 &//a 7

Concurrent Extensions to the
FORTRAN Language for Parallel
Programming of Com pu tat ional
Fluid Dynamics Algorithms
Cindy Lou Weeks

(NASA-TH-8835 3) CCBC ChEEIZ EX'IEBZIIOIS TC 187-18SEB
%BE f C B l b A l L A N G U A G E PCi6 P I A d f l l i
PEiOCP18HIBG OE C G E P U T A I I O I A L ELUXD DYIBBXICS
ALGOBXIHCIS (HASA) 29 p CSCL 093 Unclas

G3/60 43768

September 1986

National Aeronautics and
Space Administration

NASA Technical Memorandum 88363

Concurrent Extensions to the
FORTRAN Language for Parallel
Programming of Computational
Fluid Dynamics Algorithms

~ ~~

Cindy Lou Weeks, Ames Research Center, Moffett Field, California

September 1986

NASA
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

Concurrent Extensions to the FORTRAN Language

for

Parallel Programming of Computational Fluid Dynamics Algorithms

Cindy Lou Weeks*

NASA Ames Research Center
Moffett Field, California

Abstract

Experiments were conducted at NASA Ames Research Center t o define multitasking
software requirements for multiple-instruction, multiple-data stream (MIMD) computer
architectures. The focus was on specifying solutions for algorithms in the field of computa-
tional fluid dynamics (CFD). The program objectives were to allow researchers t o .produce
useable parallel application software as soon as possible after acquiring MlMD computer
equipment, t o provide researchers with an easy-to-learn and easy-to-use parallel software
language which could be implemented on several different MIMD machines, and to enable
researchers t o list preferred design specifications for future MIMD computer architectures.
Analysis of C F D algorithms indicated that extensions of an existing programming language,
that are adaptable to new computer architectures, provided the best solution t o meeting
program objectives. The CoFortran Language was written in response to these objectives
and to provide researchers a means to experiment with parallel software solutions to CFD
algorithms on machines with parallel architectures.

1. Introduction

This paper reviews the progress of concurrent computer language research at NASA
Ames Research Center, describes the design of FORTRAN concurrent constructs for parallel
processing, and presents the status of the CoFortran precompiler. Studies of multitasking
software requirements for multiple-instruction, multiple-data stream (MIMD) architecture
computers have focused on specifying solutions for specific Ames’s algorithms in the com-
putational fluid dynamics (CFD) area. The discussion is limited t o conventional concurrent
processing as opposed to the data flow and systolic array approaches that are also under
study at the Center.

The Computational Research Branch is assessing the use of parallel processing capa-
bilities on MIMD machines at Ames. Analysis showed that CFD algorithms used at Ames
could be modified for parallel processing. Representative CFD programs were then rewritten
using machine-dependent features to implement parallel processing. Parallel implementa-
tion of these programs achieved improved efficiency. Studies of concurrent programming

*Research Scientist, Computational Research Branch.

languages were then undertaken to make the process of converting programs easier and to
make the programs portable. Since CFD programs are written in FORTRAN for portzbility
and researchers are familiar with the language, extensions for parallel processing (CoFor-
tran) were added to it. The CoFortran language provides a means to experiment with
parallel software solutions to CFD algorithms on machines with parallel architectures.

2. CFD algorithms and parallel solutions

To determine how CFD problems could take advantage of MIMD architectures, three
representative, sequential CFD programs were rewritten. They were implemented and
tested on a Digital Equipment Corporation (DEC), dual VAX-11/780 configuration con-
nected with a 256KB (MA780) shared memory, as well as on a Cray X-MP/22 and a Cray
X-MP/48. The rewriting required the use of complicated, manufacturer-provided, sys-
tem programming statements for implementing concurrency and accessing shared memory.
Since these system statements are machine dependent, a separate version of each program
was needed for each machine.

In general, the CFD problems a t Ames use finite difference algorithms or spectral
algorithms (Fig. 1). Because approximate factorization is used, the algorithms can be
divided among the processors, such that each processor does a fixed portion of the work.
The maximum number of processors that can be kept busy is determined by the size and
number of the dimensions of the data array. The names of the specific programs used here
are TWING 111, [2], AIR3D [3], and the Rogallo Large Eddy Simulation (LES) [4]. TWING
is a conservative full-potential program that solves an implicit, approximate-factorization
algorithm. AIR3D is a Reynolds-averaged Navier-Stokes program that solves an implicit,
approximate-factorization algorithm. LES models isotropic, homogeneous turbulence using
spectral methods and using a Runga-Kutta algorithm to resolve time.

A cutaway of a finite difference mesh around a wing-and-body geometry illustrates
how data processing could be divided into parallel packages (Fig. 2) . Each line in the three
dimensions i (the mesh spokes that extend out from the wing), j (the lines from the body to
the wing tip and then the freestream boundary), and k (the lines around the surface of the
wing). represents a group of calculations dependent on only one variable in each respective
direction. Therefore, each line represents a vector or a “pencil” of calculations. The pencils
can be processed concurrently on separate physical processors. Since machines were not
available with the requisite hundreds of processors, the pencils are divided in groups among
the available processors. For example, on a two-processor machine the pencil sets are
divided in half, first the inboard half and the outboard half of the wing are concurrently
computed. Then the top half and the bottom half of the wing are concurrently computed.
Finally, two halves of the mesh spokes are concurrently computed. This sequence is repeated
for each iteration. The majority of a C F D program’s CPU time is spent performing this
sequence. This application benefits greatly from parallel processing because only a relatively
small portion of the CPU time is spent handling boundary conditions and other sequential
processing.

The three CFD programs display the same pattern of computation (Fig. 3). The
algorithm operations in the computational space could be separated into three sets of pencils
describing the z, y, and z computational directions. Each pencil in a set is independent

2

of the other pencils in the set. Thus, the x-direction set of pencils, as well as the y-
direction and z-direction sets can be processed in parallel. However, calculation of all the
x-direction pencils must be completed before the y-direction pencils are calculated and the
y- and z-direction pencils must be similarly synchronized.

The number of pencils computed on each processor depends on the number of pro-
cessors available. The number of processors which could be assigned work ranges from
two up to the maximum number of pencils. Typical CFD programs use a grid size of
100 x 100 x 100. Assigning one pencil to one machine may not be very efficient because
of the system overhead. Once again, the available machine for these experiments had two
processors; therefore, the groups of pencils were divided in half. For example, in a 4 x 4 x 4
system (Fig. 3) the odd pencils, 1 and 3, were put on processor 1 and the even pencils, 2 and
4 , were put, on processor 2. Thus, it was possible t o divide the large number of calculations
on the data into balanced partitions (Fig. 4).

The results of the experiments using system-specific implementations indicated that
multiprocessing improves turnaround on C F D jobs (Table 1) . In this two-processor system,
the optimum speedup factor is 2.0. The worst case, TWING, reached 78% of optimum
speedup because it requires more synchronization than the other methods. AIR3D for a
small number of iterations reached 92% of optimum speedup. The best case, LES, reached
99% of optimum speedup. These results are not from optimized code but from converted
sequential code; therefore, it is anticipated that when programs are optimized for MIMD
capabilities, the turnaround improvement will be better.

From these experiments, it was concluded that C F D problems could take advantage
of MIMD architectures. The three examples showed that a significant improvement could
be achieved by running portions of the programs in parallel. However, the process used
in the examples is not practical for general use because system service calls are not easy
for researchers t o use and are further complicated by machine-dependent features. Also,
with the period between migrations to newer machines decreasing, time and resources are
usually not available to convert the old code with each migration.

Machine-independent concurrent constructs have been designed specifically for com-
putational physics computer programs using the FORTRAN language. The next step is t o
implement CFD algorithms using these tools. These two steps are an interrelated process;
experience with the application will help refine the concurrent tools.

3. Virtual MIMD model and implementation

Since MIMD machines were available at Ames and since the CFD problems could take
advantage of MIMD capabilities, the decision was made to design a portable language to
implement this capability. The first step in the language development created an abstract
definition of the two available machines. From this model, four important characteristics
of the machines were defined: multiple processors, hardware for synchronization, shared
and local memory, and interprocessor communication mechanisms. The model consists of
an arbitrary number of homogeneous logical processors. These are traditional processors
that are run independently. In addition, the number of processors available varies with
any particular machine. Thus, the model does not specify the number of processors. Syn-
chronization is needed between the z, y, and z axes within each iteration. An event-flag

3

mechanism allows synchronization of executing processes. The virtual model has a large
global rrierriory shared by all of the processors arid has a local rnernory for each processor.
This model is advantageous for C F D problems requiring large data arrays which are ac-
cessed in varying directions with each iteration. However,this may change when there are a
large number of processors contending for one memory. A communication mechanism exists
which informs each logical processor of its own identity, expressed as an integer from 1 t o
the maximum number of processors. Typically the processor uses this number to determine
on which portion of the data to work.

The model is extended to include the notion of logical processors, which provide all
the functionality of physical processors, but which may be mapped many-to-one onto the
physical processors (with operating system support) for debugging or simulation purposes.

The synchronization ability to start a multiple number of parallel processes at once and
to wait for the same number of parallel processes to finish is not currently implemented at
the hardware level. Whether this capability is needed at the primitive concurrent construct
level to achieve maximum efficiency needs to be studied. There are tradeoffs among the
user-level program, the operating system software, and the machine hardware synchronizing
the correct number of parallel processes. The user level program has the capability to
do the counting. With a small number of processors, we are achieving excellent timing
improvements; however, this may decrease for a larger number of processors.

Since nearly identical calculations are being done on each processor on different parts
of the data, the scheduling algorithm, which divides the work up evenly among the number
of processors, works quite well for a small number of processors. An issue for further
experimentation will be to determine how to best balance the load between processors.
Perhaps a method of having each processor request a portion of work would work equally
as well or better in some circumstances. This permits different scheduling algorithms to be
tried for different numbers of processors.

Since the currently available MIMD computers have a relatively small number of pro-
cessors, they are often considered experimental prototypes of future MIMD computer sys-
tems. Methods are being developed to determine how algorithms can be broken up to run
in parallel. In addition, methods should be developed to determine the optimum number
of processors for a particular algorithm.

Finally, programs need to be designed. There is a need for timing clocks that reflect
the CPU and real-time activity of each process or task, as well as the CPU and real-time
activity of each physical processor. Additional system-support tools for debugging, such as
program trace maps, would also be helpful.

4. Language requirements

A number of steps were followed to determine the types of concurrent constructs needed
to solve CFD algorithms in parallel. Language requirements were derived from the exper-
imental test cases and the virtual machine model. The language requires procedural con-
currency statements to specify the portion of the code which is to run in parallel. It needs
synchronization statements t o start a number of processes in parallel and to wait until the
same number of processes are completed. There must be data declaration statements t o

4

specify which data are shared among processes running in parallel and a communication
mechanism to tell each parallel logical processor which portion of the data to process.

User requirements were also derived from the experimental test cases. The parallel
capability should be easy to learn and easy to use. Since new hardware is arriving faster
than software can be written for it, it would be best if once an algorithm is decomposed
into a parallel solution, only one program need be written to implement the solution on a
variety of MIMD computers.

A number of developed procedural concurrent-programming languages were considered
for possible solutions to the language requirements. These were Concurrent Pascal [5] 161,
Path Pascal [7], and Ada IS] [9]. Parallel languages implement concurrency over a spectrum
of levels / I O] . This spectrum ranges from the operating system level t o the statement level,
then to the unit level, and on up t o the program level. These procedural languages fit within
the statement and unit levels of the spectrum. They implement parallel processing with
subroutines or procedures. Concurrent Pascal ensured reproducible behavior with monitors
- procedures that encapsulate a resource definition and operations that manipulate the
resource [111 1121. However, since the language was not implemented on MIMD-architecture
computers, but instead simulated on sequential computers for parallel architecture research,
it was not available for our MIMD machines. It was not practical t o use this language as
it would have invo!ved writing a compiler for each machine, designing operating syst,ern
interfaces, and converting all the previous application programs. Path Pascal allowed state-
ments of task execution and had monitor-defined operations. However, it was designed
primarily for resource management. Path Pascal did not allow for resynchronization since
it assumed once a task was started its completion time was unimportant. Ada offered task
definition and “rendezvous” (synchronization) statements, but was designed for real-time
process control systems. Ada was not available for MIMD-architecture machines. It did not
consider starting multiple copies of the same program on homogeneous processors. Many of
these types of languages were designed to solve the interactive-operating-system problem
of throughput instead of the large-CPU-bound job problem of turnaround.

5. Concurrent construct extensions to the FORTRAN language

There are boundary conditions in CFD problems that need to be handled; hence,
the parallel portion of the solution program has conditional statements. These conditional
statements make the use of semiautomatic or do-loop multitasking languages awkward.
However, it is easy to handle conditional cases in procedural parallel languages.

To make reprogramming of existing software into parallel processing as efficient as
possible for researchers and programmers, features of these procedural languages were used
as enhancements t o the FORTRAN language. The resulting CoFortran language provides
a familiar programming environment, thus avoiding the apprehension and learning time
involved with a new language. In the implementations to date a monitor is used to ensure
reproducible behavior as in Concurrent Pascal and Path Pascal. This monitor is not a sep-
arate entity but one which is incorporated across all of the expanded concurrent constructs.

CoFortran programs contain a combination of FORTRAN statements and new con-
The parallel language issues are resolved by current programming extensions (Fig. 5).

extending FORTRAN in the following areas (that closely match the characteristics of the
MIMD model).

1. C o n c u r r e n c y Statements define which portions of the code can be run in parallel.
CoFortran is a procedural parallel language; thus, the concurrency statements are like
a sequential FORTRAN “SUBROUTINE” statement.

2. Synchronizat ion Statements provide the ability for starting coprocesses and re-
turning to sequential execution. These statements are like a sequential FORTRAN
“CALL” statement.

3. Data Passing Statements explain where da t a reside. These statements are like
sequential FORTRAN “COMMON” statements. CoFortran bases data passing on a
large shared memory.

4. The Communica t ion Mechanism provides the basis for the scheduling mechanism.
A number is assigned to each process, a value from 1 t o the maximum number of
processes. The number typically is used to determine on which portion of the data to
work.

6. CoFortran Language Usage

The researcher uses the CoFortran parallel constructs t o map algorithms onto the
MIMD machines. (1) The first step is t o analyze the algorithm to determine mathematical
restrictions on partitioning of the problem. (2) The second step is t o identify portions of
the code that must be executed sequentially and that require synchronization points. (3)
The third step is t o isolate tasks which can be run concurrently. (4) The fourth step is t o
incorporate the CoFortran code for concurrent process control and data management into
the original program. (5) The final steps are to execute the modified code and t o analyze
the performance.

To build and execute a CoFortran concurrent program the procedure is as follows.
First the modified code and a machine-dependent macro expansion set are run through the
CoFortran precompiler. The generated code is then run through the FORTRAN compiler
(Fig. 6). For each concurrent processing construct, the precompiler generates a combination
of machine-specific parallel processing code and standard FORTRAN code. The use of
macro expansion sets for the concurrent statements enables easy addition of new machine-
dependent specifications. These features allow the precompiler t o reside on a different
machine than the one used to execute the application program. The FORTRAN generated
by the precompiler is input to the FORTRAN compiler of the target machine. The resulting
object files are then linked to the appropriate run-time libraries and executed on the parallel
machine. In addition, there can be several macro expansion sets for one parallel processing
system. This feature may be used t o test different scheduling, debugging, and timing
strategies.

Time sequences illustrate the means by which sequential-program solutions of CFD
algorithms can be converted t o concurrent program solutions (Fig. 7) . Over time, a suitable
multiprocessed program completes processing sooner than a sequential program. Each of
the vertical lines represents a time period when code is executing on a logical processor.
Depending on the hardware configuration, each of the logical processors may reside on a

6

separate physical processor. Since timesharing is possible and since the main process of C F D
algorithm solutions is concerned with synchronization between parallel code and sequential
code, the main process could, with minimal impact, share a physical processor with one of
the parallel tasks. For clarity, the code running in parallel would be separated from the
main program.

Insertion of the concurrent constructs into their relative locations within the time-
sequence figure illustrates how they fit in a CoFortran program (Fig. 8). The Share initial-
ization statements are placed in the declaration section of the main CoFortran program.
Next the CoInit concurrent-process-creation statements occur in the executable section of
the main program. Since process-creation overhead is generally quite high, this implementa-
tion brings the processes into existence only once prior to executing the processes in parallel.
Then, within the main program, the CoStart statement is entered to run parallel versions of
the concurrent processes. After starting concurrent process X in parallel, the main program
waits for the parallel pieces to finish working on the data in the 2 direction. Next, the main
process issues the CoStart statement to run parallel versions of the coprocess, working on
the data in the y direction. The CoWait statement allows the main program t o continue
processing and then, at an appropriate time, t o explicitly wait until all the parallel tasks
are finished. This explicit synchronization occurs prior t o and after processing the data in
the L direction. The main program loops back t o repeat the sequence of processing the data
in the z, y, and z’ directions for a number of time steps. Finally, the explicit CoStop and
Release statements may occur in the main program if resources need to be released prior
t o job completion. The location of the constructs within each CoProcess program are also
illustrated. The first statement is the CoProcess statement which delimits the beginning
of the CoProcess code (as a FORTRAN “SUBROUTINE” statement delimits the begin-
ning of the subroutine code). The appropriate Share initialization statements are placed in
the declaration section of the CoFortran CoProcess program. Then an optional section of
initialization code in the CoProcess executable section is run at CoProcess creation time.
The CoBegin and CoEnd statements delimit the parallel block of code which is run on each
logical processor after each Cost art statement is issued. The underlying implementation
uses the particular machine’s event flags for synchronization. Because the CoStart, CoW-
ait , CoStop, CoBegin, and CoEnd statements are easier (machine-independent), clearer
(easier t o read), and safer (code already proven correct) t o use than machine-dependent
statements, the researcher need not be concerned with keeping track of event flags and
corresponding synchronization logic.

The CoFortran language uses the features of MIMD computer architectures. One
copy of the CoProcess program resides on disk. Each CoProcess program is linked as
a single executable program containing all the code for all processes. When the logical
processes run, they execute each program’s statement, not in lockstep, but independently.
In addition, because of conditional statements and data dependent statements, each of the
logical processors may not execute the same code. It is most efficient to have each of the
logical processors correspond to a physical processor, but this is not necessary.

Multitasking led to the requirement of a new type of common storage in the FORTRAN
language. The CoProcess data have two types of common data: COMMON (local-process)
and Shared (global) (Fig. 9). A CoProcess program may contain subroutines which may

7

declare variables in a shared memory area to communicate information between the sub-
routines. Thus, when the parallel processes of t,he Coproress are created variables placed
in a global memory will be seen not only between subroutines, but also between all parallel
processes. Thus, a local-process memory area is needed which is seen only by subroutines
of each created parallel process of a CoProcess, and a global memory area is needed which
is visible to all processes. This means of communication between subroutines, instead of
parameter passing, may be necessary if large quantities of data are shared in order t o elimi-
nate overhead caused by large data transfers. Since the multiple VAX system has machines
with separate local memory, each process had local-process shared memory. On machines
with one large shared memory, such as the Cray X-MP, a special provision was needed
since all of the memory was in one location and only one kind of common memory was ini-
tially provided in FORTRAN. As a result, Cray implemented the capability of expressing
a difference between global variables and local-process variables.

7. Comparison with machine-dependent multiprocessing statements

The CoFortran constructs simplify design of parallel algorithm solutions. For example,
on the VAX system, one statement would replace the complicated system service calls
(Fig. 10) [13] [14] and on the Cray X-MP, one CoWait statement would replace explicit
event synchronization statements (Fig. 11) [151. Having a monitor which is already proven
correct frees the researcher t o concentrate on the algorithm solution and refinement.

The implemented solution for the expansion of the constructs on the Cray X-MP uses
the Task and Event primitives (Fig. 12). The CoInit construct provides information to set
up the Task array tables and the event flags, and to create the tasks. The CoStart signals
the events to start the tasks executing the parallel code. The CoWait waits for each task
to finish and then resets the event flags and posts the signal for each task to wait for the
start signal. Thus, the researcher is not involved with the detailed logic of flags, events, or
synchronization.

A simpler programming method uses only Cray TASK statevents (Fig. 13). One Large
Eddy-code implementation is done in this manner. Future experimentation will indicate
which methods are most efficient for various CFD algorithms.

We will continue to research Ames’s CFD algorithms on prototype systems and develop
experimental test cases. We will disseminate the results t o aid in the future standardization
of multitasking constructs. Thus the next steps in this project are to test the prototype
concurrent-language tools on the VAX quad processors and on the Cray X-MP/48 in order
t o make timing measures and to obtain feedback on ease of use from researchers at Ames.
The concurrent-language tools will then be made available for testing on future MIMD
supercomputers.

8. Implementation

A CoFortran language interface was written for the two MIMD machines available at
NASA Ames - the Cray X-MP/48, and the DEC Quad VAX-l1/785s with 4MB (MA780)
shared memory. The interface consists of CoFortran macro expansion files and the CoFor-
tran precompiler. The initial version of the concurrent FORTRAN precompiler is currently
being tested. A macro expansion set of files for the Cray X-MP machine is also being

8

tested. A macro expansion set of files and a concurrent monitor system has been written
for the Quad VAX with shared memory and is available for debug testing.

Samples are given in Figure 14 which illustrate how the CoFortran language works
including a portion of the sequential FORTRAN program (Fig. 14a) and a portion of the
concurrent CoFortran version of the program (Fig. 14b). Along with the program sections
are the corresponding portions of the output file generated by the CoFortran precompiler
(Fig. 14c). The output snapshots illustrate the underlying implementation in the macro
expansions.

In these samples, the scheduling strategy is to partition the data among the processors
based on a number indicating the part of the data on which to perform calculations. The
variable nps denotes the number of logical processors available and the variable pid denotes
the processor identification number. The two variables are monitor variables which provide
the basis for the scheduling strat,egy. As mentioned before, the monitor is incorporated
across all of the macro expansion sets. The precompiler expands each of the CoFortran
constructs based on a predefined, corresponding macro expansion file.

Macro expansions of the CoFortran statements provide the capability to rapidly expand
to new machines, since no precompiler code needs to be changed. In addition, once a new
macro expansion set is written for the new machine, all CoFortran programs can be run
without being rewritten.

An initial version of the CoFortran User’s Guide is available which contains detailed
information on each of the CoFortran commands. This document also contains listings of the
available macro expansion sets, additional sample programs, and details of system-specific
consider at ions.

9. Conclusions

A CoFortran Language interface was written for the two MIMD machines available at
NASA Ames - the Cray X-MP/48 and the Digital Equipment Corporation Quad VAX-
11/785s with 4MB shared memory. The interface consists of CoFortran macro expansion
files and the CoFortran precompiler. CoFortran provides a machine-independent resource
for parallel processing researchers. Sequential programs can be converted to portable paral-
lel programs using the high-level CoFortran language. I t is hoped that for a small number
of processors, these parallel programs may exceed a speedup of 75% of n for an n-processor
system over a single-processor system. Issues for further language study include additional
capabilities a t the primitive concurrent-construct level, load balancing among processors,
varying scheduling algorithms, and implementation of debugging tools. Future experiments
will aid in obtaining insight into these issues and in further development of parallel process-
ing capabilities.

References

[l] T.L. Holst, and S.D. Thomas, Numerical Solution of Transonic Wing Flow Fields,
AIAA Paper 82-0105 (January 1982).

[2] S.D. Thomas, and T.L. Holst, Numerical Computation of Transonic Flow About Wing-
Fuselage Configurations on a Vector Computer, AIAA Paper 83-0499 (January 1983).

9

[3] T.H. Pulliam, and J .L. Steger, Implicit Finite-Difference Simulations of Three Dimen-
sional Compressible Flow, AIAA J. 18 (1980) 159.

[4] R.S. Rogallo, Numerical Experiments in Homogeneous Turbulence, NASA TM-81315
(September 1981).

151 P.B. Hansen, The Programming Language Concurrent Pascal, IEEE Transactions on
Software Engineering, l (2) (June 1975) 199-207.

[6] J .M. Kerridge, A FORTRAN Implementation of Concurrent Pascal, Software - Prac-
tice and Experience, 12(1) (January 1982) 45-55.

[7] R.H. Campbell, and R.B. Kolstad, An Overview of Path Pascal’s Design and Path
Pascal Users Manual, SIGPLAN Notices, 15(9) (September 1980) 13-24.

[8] H.F. Ledgard, ADA: An Introduction and Ada Reference Manual (July 1980), Parts 1
and I1 (Springer-Verlag, New York, 1981).

[9] P. Hibbard, A. Hisgen, J . Rosenberg, M. Shaw, and M. Sherman, Studies in Ada Style
(Springer-Verlag, New York, 1981).

[lo] N. Gehani, and C. Wetherell, Levels of Concurrency - A Taxonomy for Parallel Pro-
cessing, Proceeding for the Argonne Workshop on Programming the Next Generation
of Supercomputers (October 1984).

1111 G.R. Andrews, and F.B. Schneider, Concepts and Notations for Concurrent Program-
ming, Computing Surveys, 15(1) (March 1983).

[12] C.A.R. Hoare, Monitors: An Operating System Structuring Concept, Communications
of the ACM, 17(10) (October 1974).

[131 VAX/VMS System Services Reference Manual, AA-Z501A-TE (Digital Equipment
Corporation, September 1984).

1141 Using Shared Memory, Appendix E, VAX/VMS Release Notes Version 4.0, AA-Z105A-
TE (Digital Equipment Corporation, September 1984).

[15] Multitasking User Guide, Cray Computer System Technical Note SN-0222 (Cray Re-
search, Inc., February 1984).

10

TABLE 1
RESULT OBTAINED ON A DUAL VAX 11/780 WITH SHARED MEMORY

SPEEDUP = 1 PROCESSOR CPU TIME/2 PROCESSOR CPU TIME

CODE NO. ITERATIONS SPEEDUP

TWING 3 1.27
- 10 1.45
- 30 1.54
- 60 1.55

AIR3D 15 1.85
LARGE EDDY 1 SIMULATION

5
100

1.80
1.98

11

0 A GENERAL IMPLICIT FINITE-DIFFERENCE ALGORITHM
CAN BE REPRESENTED AS

Qn+l = L Q"
Fxyz XYZ

0 GENERAL SOLUTION METHOD FOR APPROXIMATE
FACTORED ALGORITHMS

FACTO R E D EQU AT I ON :

F ~ F ~ F , Q " + ~ = L,,,~Q"

WHERE Fxvz = FxFYFz + O(At2) (At IS TIME STEP)

Fig. 1. Types of algorithms being solved

12

WING - ROOT -VORTEX SHEET

PHYSICAL
COOR D I NATES

COMPUTATIONAL
COORDINATES

Fig. 2. Cutaway of a finite-difference mesh around a wing

13

I I

..
c
z
0

2
0

8 s

w
k
5
a
I

L

J

K
z w

w
I-

9

2
00
I

0

J J 3
w w w

2 2 2
0 0 0

X > N
Z I Z
w w w
I - I - I -

3 3 3
4 5 4
Y Y Y
4 4 4
0 . .

w,

14

IN I TI AL I2 AT1 ON

SEQUENTIAL
COMPUTATION

I

CALC Y CALC Y o m .

1ST PART 2ND PART

CALCULATE:
1ST PART OF X DATA
2ND PART OF X DATA

0

nTH PART OF X DATA

CALC Y
nTH PART

CALCULATE:
1ST PART OF 2 DATA
2ND PART OF 2 DATA

0
0

nTH PART OF 2 DATA -

I I N IT1 AL CAT1 ON

nTH PART

1
1ST PART 2ND PART nTH PART

SEQUENTIAL
COMPU,TATION]

SEQ. CALC.
AND WRITE

EXIT J

Fig. 4. Program flow: sequential vs. concurrent processing

15

> Concurrency

CoProcess
CoBegin
CoEnd

> Synchronization

Colnit
CoStart
CoWait
CoStop

> Data Passing

Share
Release

> Communication

Process I dent if ication

Fig. 5 . Concurrent extensions to FORTRAN

16

I,

E
rd

17

SEQUENTIAL (1 PROCESSOR)

-

MAIN

SEQUENTIAL

CALCULATE X VALUES ON
EACH OF 4 PROCESSORS IIJT]

IIJ13
llJIl

1 1

CALCULATE Y VALUES ON
EACH OF 4 PROCESSORS

!I

CALCULATE 2 VALUES ON
EACH OF 4 PROCESSORS

SEQUENTIAL

SEQUENTIAL CALCULATIONS

! f - -

1 AND PRINT THE RESULTS

IN I TI AL I ZATlON

SEQUENTIAL

CALCULATE X VALUES

CALCULATE Y VALUES

CALCULATE 2 VALUES

THESE TIME SEQUENCE FIGURES SHOW THE MEANS
BY WHICH CFD ALGORITHMS CAN BE PROGRAMMED
SEQUENTIALLY AND CONCURRENTLY. THE
CONCURRENT FIGURE ILLUSTRATES HOW A FOUR
PROCESSOR SYSTEM WOULD OPERATE. THERE IS
A SIGNIFICANT SPEEDUP IN WALL CLOCK TIME

LARGE COMPARED TO THE SEQUENTIAL
CALCULATION TIME OF THE PROGRAMS.

SEQU E NT I AL

SEQUENTIAL CALCULATIONS SINCE THE AMOUNT OF CALCULATION TIME IS

AND PRINT THE RESULTS

END

Fig. 7 . Time sequence of sequential and multiprocessed programs

18

MAIN SEQUENTIAL -

-

INIT.

SEQ.

CALC. X
VALUES

CALC. Y
VALUES

CALC. Z
VALUES

SEQ.

SEQ. CALC.
PRINT

STOP

MAIN MULTIPROCESSED (4 PROCESSORS)

INITIALIZATION
SHAREIDATAforXl . . .
SHARE IDATAforZI . . .
SHARE /DATAforY/ . . .
COlNlT X
COlNlT Y
COlNlT Z

SEQUENTIAL
COSTART X (WAIT)

COPROCESS X ---- - - 111-I INITIALIZATION
SHARE /DATAforX/ . . .
COBEGIN X

1 2 3 4 process id (%pid) = 1, 2, 3, or 4
CALCULATE ASSIGNED PORTION
OF X VALUES

I_-
T COSTART Y (NOWAIT)

COEND

STOP _ _ _ _ _ _ _ _ ---

COPROCESS Y ---- - - [111 LNlTlALlZATlON
SHARE IDATAforYI . . .
COBEGIN Y

1 2 3 4 process id (%pid) = 1, 2, 3, or 4
CALCULATE ASSIGNED PORTION - --

STOP - __-_------
COWAIT Y

COPROCESS Z

COBEGIN Z
1 2 3 4

14-1 COEND

process id (%pid) = 1, 2, 3, or 4
CALCULATE ASS I G N ED PORT ION
OF Z VALUES

STOP _------ ----

SEQUENTIAL
7

SEQUENTIAL CALCULATIONS AND PRINT THE RESULTS

STOP

Fig. 8. Program flow chart with concurrent construct locations indicated.

19

I * E I
~ 8 1

LJ** I

20

CONSTRUCT FORMAT:

COPROCESS PASS7ODD

STATEMENTS REPLACED BY THIS CONSTRUCT:
~

ASSOCIATE WITH EVENT FLAG CLUSTER
CALL ASC$F LAGS('SH RM EM0 : FLAGS', 65)

GET PROCESS ID NUMBER
CALL PROCESS$ID(PID)

WAIT FOR FLAGS SET IN MAIN PROCESS
ATST=SY !%$WAIT F (%VAL (P I D+79))
IF (ATST .NE. 1) WRITE(6,18) ATST
18 FORMAT('ATST STATUS=',8Z)

CLEAR FLAGS
ASST=SYS$C L R E F (%VAL (P I D+79))
IF (ASST .NE. 1) WRITE(6,88) ASST
88 FORMAT(' ASST STATUS=',82)

Fig. 10. Comparison of construct and system service calls

21

CONSTRUCT FORMAT

COWAIT(NAM E)

I STATEMENTS REPLACED BY THIS CONSTRUCT

DO 30 ID = 1,NMS

DO 40 ID = 1,NMS
30 EVWAIT(NAM E-EN D(I D))

EVC LEAR (NAM E-BGN (ID))
EVC L EAR (N AM E-EN D (I D) 1

EV POST (N AM E -CNT (I D 1) 40

Fig. 11 . Comparison of construct implemented on the Cray X-MP

22

23

U

n m -
I1 II

24

PROGRAM SEQ
DO 20 TIMESTEP = 1.10

DO 30 I = 1,20
X(TIMESTEP,I) = A * I

30 CONTINUE
20 CONTINUE

PROGRAM PAR
DO 20 TIMESTEP = 1.10

COSTART XPA WAIT 4
20 CONTINUE

COPROCESS XPA XPARl 4 4
COBEGIN XPA

DO 30 I = (((20/nps) * (pid-1)) + 11, (20/nps)*pid
X(TIMESTEP.1) = A * I

30 CONTINUE
COEND XPA

Fig. 14. Samples which illustrate how the CoFortran language works

(a) Sequential FORTRAN version of program

(b) Parallel CoFortran version of program

25

PROGRAM PAR
DO 20 TIMESTEP = 1.10

CM COSTART XPA WAIT 4
CM MMMMMMMMM CRAY MMMM COS MMMM MACRO MMM 09-24-85 MMMMM COSTART
CM Cost art $1 $ 2 3 4
CM COSTART 3-char-name WAITINOWAIT nps (DO nps=x,y,z)
CM

CALL EVPOST(XPABGN(MNTRmid))
DO 2400'7 MNTRmid = 1, MNTRnms

2400'7 CONTINUE
IF ('WAIT' .EQ. 'WAIT') THEN

DO 24009 MNTRmid = 1,MNTRnms
CALL EVWAIT(XPAEND(MNTRmid))

CALL EVCLEAR(XPABGN(MNTRmid))
CALL EVCLEAR(XPAEND(MNTRmid))
CALL EVPOST(XPACNT(MNTRmid

24009 CONTINUE
DO 24011 MNTRmid = 1, MNTRnms

24011 CONTINUE

CM MMMMMMMMM CRAY MMMM COS MMMM EXPANSION MMMMMMMMMMMMM COSTART
ENDIF

20 CONTINUE

CM COPROCESS XPA XPARl 4 4
CM COBEGIN XPA

CM COBEGIN 1=3_char_name
CONTINUE

24045 CONTINUE

CM MMMMMMMMM CRAY MMMM COS MMMM MACRO MMM 09-24-85 MMMMM COBEGIN

CALL EVWAIT(XPABGN(XPApid(mid)))
IF (XPASTP(XPApid(mid)))

CALL EVCLEAR(XPACNT(XPApid(mid)))
X GOTO 24046

CM MMMMMMMMM CRAY MMMM COS MMMM EXPANSION MMMMMMMMMMMMM COBEGIN
DO 30 I = (((2O/nps) * (pid-1)) + l), (2O/nps)*pid

X(TIMESTEP,I) = A * I
30 CONTINUE

CM COEND XPA

CM COEND 1=3_char_name
CM MMMMMMMMM CRAY MMMM COS MMMM MACRO MMM 09-24-85 MMMMMMM COEND

CALL EVPOST(XPAEND(XPApid(mid)))
CALL EVWAIT(XPACNT(XPApid(mid)))
GOTO 24045

24046 CONTINUE
CM MMMMMMMMM CRAY MMMM COS MMMM EXPANSION MMMMMMMMMMMMMMM COEND

(C)
Fig. 14. Concluded

(c) CoFortran precompiler generated code

26

1 Report No
NASA TM-88363

10. Work Unit No
9. Performing Organization Name and Address

2 Government Accession No 3 Recipient's Cdtalog No

Ames Research Center
Moffe t t F i e l d , CA 94035

CONCURRENT EXTENSIONS TO THE FORTRAN 4 Title and Subtitle

LANGUAGE FOR PARALLEL PROGRAMMING OF COMPUTATIONAL
FLUID DYNAMICS ALGORITHMS

7 Author(s)

Cindy Lou Weeks

11. Contract or Grant No. I

5 Report Date

Se tember 1986
Orgnlzatloo Cade

8 Performing Organization Report No

A-864 14

13. Type of Report and Period Covered
Sponsoring Agency Name and Address

Nat iona l Aeronaut ics and Space Adminis t ra t ion
Technica l Memo r and um

14. Sponsoring Agency Code
Washington, DC 20546 505-37

I 5 Supplementary Notes

Poin t of Contact:
Moffe t t F i e l d , CA 94035 (415) 694-6015 o r FTS 464-6015

Cindy Lou Weeks, Ames Research Center , MS 233-14,

16 Abstract

Experiments were conducted a t NASA Ames Research Center t o d e f i n e m u l t i
t a s k i n g sof tware requirements f o r mul t ip l e - in s t ruc t ion , mul t ip le -da ta stream
(MIMD) computer a r c h i t e c t u r e s . The focus w a s on spec i fy ing s o l u t i o n s f o r
a lgor i thms i n t h e f i e l d of computational f l u i d dynamics (0) . The program
o b j e c t i v e s w e r e t o a l low re sea rche r s t o produce usable p a r a l l e l a p p l i c a t i o n
sof tware as soon as p o s s i b l e af ter acqu i r ing MIMD computer equipment, t o
provide r e sea rche r s w i th an easy-to-learn and easy-to-use p a r a l l e l sof tware
language which could be implemented on several d i f f e r e n t MIMD machines, and
t o enable r e sea rche r s t o l ist p re fe r r ed des ign s p e c i f i c a t i o n s f o r f u t u r e
MIMD computer a r c h i t e c t u r e s . Analysis of CFD a lgor i thms ind ica t ed t h a t
ex tens ions of an e x i s t i n g programming language, t h a t are adaptab le t o new
computer a r c h i t e c t u r e s , provided t h e b e s t s o l u t i o n t o meeting program objec-
t ives. The CoFortran Language w a s w r i t t e n i n response t o these o b j e c t i v e s
and t o provide r e sea rche r s a means t o experiment w i t h p a r a l l e l sof tware
s o l u t i o n s t o CFD a lgori thms on machines w i t h p a r a l l e l a r c h i t e c t u r e s .

17. Key Words (Suggested by Author($))

Concurrent computer language ;
Mult iprocess ing sof tware ; P a r a l l e l
sof tware s o l u t i o n s t o CFD algori thms;

18. Distribution Statement
Unclass i f ied - Unlimited

Mul t ip l e processor (MIMD) computer
a r c h i t e c t u r e s Subject Category - 60

22. Rice'

A03 Unclass i f ied

'For sale by the National Technical Information Service, Springfield, Virginia 22161

Unclass i f ied 28

